T1/E1 && T3/E3/DS3:

http://www.professormesser.com/network-plus/n10-005/t1-e1-and-t3-e3-ds3/

+Questions:

- 1. A T1 line employs what type of multiplexing?
- a. Time-division multiplexing, it chooses which signal to transmit based on time
- 2. When entering a building, what type of media does T1 line most likely use?
 - a. Twisted pair cabling
- 3. With what type of media would a T3 likely use when it enter a building?
 - a. Coaxial, with BNC connectors

Satellite, ISDN, Cable, DSK, and Dialup:

 $\underline{http://www.professormesser.com/n10-005/satellite-isdn-cable-dsl-and-dialup/}$

+Questions:

- 1. How does the cost of non-terrestrial communications compare with conventional terrestrial networking?
 - a. Non-terrestrial communications tend to be much higher because the technologies that it runs on are much more expensive.
- 2. Other than cost, what is the significant disadvantage of satellite communications?
 - a. Latency, from a networking perspective, the latency is incredibly high for satellite comms.
- 3. What does the A in "ADSL" represent?
 - a. Asymmetric, which indicates that the download speed is different from the upload speed.
- 4. What type of media would an ADSL use when it enter a building?a. Uses standard telephone lines
- 5. What type of DSL is capable of speeds of up to 100Mbit/s?
 - a. VDSL—Very High Bitrate DSL.

Circuit Switching and Packet Switching

 $\frac{http://www.professormesser.com/n10-005/circuit-switching-and-packet-switching/+Questions:}{}$

- 1. Which technology, circuit or packet switching, is most like the technology utilized by POTS?
 - a. Circuit Switching
- 2. What is the major criticism of circuit switching?
 - a. It is very inefficient use of resources, can only be used for one connection and not shared.
- 3. Why is packet switching considered more efficient than circuit switching?
 - a. Data is grouped into packets for easier transfer, the media is shared on the network, and it is more efficient for sharing the connection.

Transmission Media, Speed, and Distance

http://www.professormesser.com/n10-005/transmission-media-speed-and-distance/ +Questions:

- 1. What are the three major WAN cable types?
 - a. Coax, Twisted Pair, Fiber Optic
- 2. When was coax cable patented?
 - a. 1880's
- What type of cable is typically used in a local area network?
 a. Twisted Pair
- 4. What purpose does the twist in TWP copper cable server?
 - a. To reduce electromagnetic interferences
- What type of cabling would you use for very long distance and very high speed runs?
 a. Fiber Optic
- 6. When you use fiber optic cables, what are two conventional cabling operations that require extra care?
 - a. It must be terminated properly, and be careful not to bend fiber optic at a high radius.

+Notes

+ T1/E1 && T3/E3/DS3

- T1, called T-Carrier Level 1, has been around for some time
 - Uses Time-division Multiplexing
 - Has digital signals coming through and it decides which channel is going to be used based on time, and it moves around each channel in a time division method
 - A standard that is used in North America, Japan, and South Korea
 - It has 24 separate channels
 - Runs at 1.544 Mbit/s line rate (speed)
 - 64 kbit/s per channel
- E1, E-Carrier Level 1, is the European version of T1
 - Has 32 separate channels
 - Runs at 2.048 Mbits/s line rate (speed)
 - Still 64 kbit/s per channel
 - Still uses Time-division Multiplexing
- T3, called T-Carrier Level 3
 - It's the next level up
 - Comes into a facility using COAX, with BNC connectors
 - Higher level signals
 - Different from T1, which comes in Twisted-Pair
 - T3 is often referred to as DS3,
 - DS3 is referring to the DATA that is passing through a T3 connections
 - \circ T3 = 28 T1 Circuits
 - 28 * 24 = 672 T1 Channels
 - 44.736 Mbit/s line rate (speed)
- E3, E-Carrier Level 3...
 - \circ E3 = 16 E1 Circuits
 - 16 * 32 = 512 E1 Channels
 - 33.368 Mbit/s line rate (speed)
- T3/E3 are typically placed into a major data center to increase total throughout

+ Satellite, ISDN, Cable, DSK, and Dialup

- Satellite—connects directly from facility up to a satellite, and back down to the service provider
 - Non-terrestrial communication, connecting through space
 - Higher cost relative to terrestrial networking-the cost of getting satellites into orbit
 - 5Mbit/s down, 1Mbit/s up
 - Advantages: Available for remote sites that are difficult to network through terrestrial media
 In the middle of nowhere... on a cruise... not worried about local connectivity
 - Disadvantages:
 - High latency
 - 250 ms up, 250 down... Half of a second to send one packet
 - Real-time applications are significantly impacted...
 - Convenience shop credit card authentication is okay...
 - You have to be able to see the satellite...
 - High frequencies—2Ghz
 - Rain Fade—after a bad storm, the clouds can affect connection
 - Satellites can't see you...
 - Line of sight—absolutely clear view of Dish and Satellite
- ISDN—Integrated Services Digital Network
 - Allowed for Voice and Data over a single standard phone line (home, business, building, etc)

- Smaller version of ISDN: BRI—Basic Rate Interface (2B+D Connection)
 - 2B refers to Two 64 kbit/s bearer (B) channels
 - Allowed for up to 128 kbit/s throughput
 - D refers to One 16 kbit/s signaling (D) channel
 - Channel specifically used for signaling
 - Making sure the connection is brought up and making sure it's torn down at the end
- In larger environments: PRI—Primary Rate Interface
 - For higher throughput, or many more connections
 - Delivered over a T1 or E1 line, transmitting ISDN signals
 - T1—23B + D
 - E1-30B + D + alarm channel
 - Commonly used as connectivity from the PSTN to large phone systems (PBX)
- ADSL—Asymmetric Digital Subscriber Line
 - Uses telephone lines to provide these connections
 - Called Asymmetric because download speed is faster than the upload speed (Asymmetric)
 - Limited by how far the signal can travel over a phone line
 - 10,000 foot limitation from the central line
 - 24 Mbit/s downstream // 3.5Mbit/s upstream
- SDSL—Symmetric Digital Subscriber Line
 - Never really caught on, was never standardized
 - \circ $\,$ Allowed for the same download and upload speeds
- VDSL—Very High Bitrate DSL
 - More popular/catching on
 - A possible range of 4Mbit/s up to 100Mbit/s connection speed
- Cable—Cable Modem/Data on the Cable Network
 - o DOCSIS—Data Over Cable Service Interface Specification
 - The standard to send data over cable
 - Allow high-speed networking
 - 4 Mbit/s through 100 Mbit/s
 - Multiple Services supported
 - Data, Voice, and Television
- Dialup—network with voice telephone lines
 - It's a legacy system
 - Run over standard analog frequencies
 - 56 kbit/s modems
 - With compression, up to 320 kbit/s
 - Theoretical maximum
 - It's relatively slow, difficult to scale

+Circuit Switching && Packet Switching

- Circuit Switching—circuit is established between endpoints before data passes
 - Like a phone call
 - Nobody else can use the circuit, it's an inefficient use of resources
 - Like a T1, the connection is always there, use it or not...
 - You pay a lot more.
 - Used in POTS, PSTN, T1/E1/T3/E3, ISDM
 - Packet Switching—Data is grouped into packets || Cheaper (SONET, ATM, DSL, Cable, Wireless)
- Voice, data, video, etc... like a network || Can use shared media (many can use, efficient) +Transmission Media, Speed, and Distance
 - Network Media—nothing happens unless the media works
 - OSI Layer 1, the physical layer
 - Things to consider when building a network:

- Media (types of cables/interfaces)
- Speed
- Distance
- Three types of cables:
 - Coax, twisted pair, fiber
 - Usually picking one...
- Coax—Copper wire that is placed inside very heavy and thick cables
 - It was patented in the 1880's
 - Can carry signals over long distances
 - Not so much so today, we use fiber
 - Disadvantage:

•

- Signal leakage and ground loops
 - Other copper-related interface issues
- Twisted-pair Copper—good for local area connections
 - Many copper wires, all twisted together to create pairs
 - Effectively it creates a way to cancel interference that might hit the wire from one place to another
 - Early telegraph lines had a twist to cancel interference
 - Very thing, very flexible, very inexpensive
 - Tight specification for bend radius and pulling tension
 - Relatively fragile to install
 - Optic Fiber—communicating through light
 - Technology demonstrated in 1840's
 - Can travel very long distance communication
 - Kilometers at high speeds
 - Not susceptible to EMI
 - Not interference, electrical or magnetic
 - Only need to worry about the brightness of light
 - Must be terminated properly
 - Watch the bend radius, or you'll lose a lot of light/signal